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Abstract
Starting from a weak gauge principle we give a new and critical revision of
the argument leading to charge quantization on arbitrary spacetimes. The
main differences of our approach with respect to previous works appear on
spacetimes with non-trivial torsion elements on its second integral cohomology
group. We show that in these spacetimes there can be topologically non-
trivial configurations of charged fields which do not imply charge quantization.
However, the existence of a non-exact electromagnetic field always implies the
quantization of charges. Another consequence of the theory for spacetimes with
torsion is the fact that it gives rise to two natural quantization units that could
be identified with the electric quantization unit (realized inside the quarks)
and with the electron charge. In this framework the colour charge can have
a topological origin, with the number of colours being related to the order of
the torsion subgroup. Finally, we discuss the possibility that the quantization
of charge may be due to a weak non-exact component of the electromagnetic
field extended over cosmological scales.

PACS numbers: 11.15.−q, 45.10.Na, 14.80.Hv, 14.65.−q

1. Introduction

The idea of justifying electric charge quantization by means of topological arguments goes
back to Dirac [14]. He showed that the existence of a magnetic monopole would imply that
both the charge of the monopole and the electric charge of any other particle in the Universe are
quantized. Since the electromagnetic field diverges at the worldline of the magnetic monopole,
the problem was essentially that of a charged particle moving on a spacetime with non-trivial
topology.
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Wu and Yang presented in [40] a geometrical explanation for the charge quantization
argument proposed by Dirac. These authors showed that the quantization of the charge of a
magnetic monopole is completely equivalent to saying that the monopole can be described as
a connection on a non-trivial principal U(1)-bundle over spacetime. Although the approach
followed by these authors is suitable for the particular case of the magnetic monopole, as
we shall see in due course their point of view is not general enough for studying charge
quantization on arbitrary spacetimes.

Therefore, the purpose of our paper is to analyse, starting from basic and well-established
physical principles, the most general conditions which lead to quantization of electric charge
on spacetimes with non-trivial topology. According to recent research these spaces cannot be
directly ruled out if we take into account our present cosmological knowledge [27–29].

We give a new and critical revision of the argument leading to charge quantization based
on what we call the ‘weak gauge principle’ and without assuming a priori an identification
between electromagnetism and principal U(1)-bundles with connections. The main difference
of our approach with respect to the standard ones lies on the fact that the weak gauge principle
only appears in the presence of (at least) two different charged matter fields in interaction
with a gauge field. Note that one of them should be considered as the charged reference field
allowing for a measure of the relative interference Aharonov–Bohm class with respect to the
second charged field.

As we shall see, this extension of the gauge principle agrees with the ordinary gauge
principle (referred to in the paper as the ‘strong gauge principle’) and makes no difference for
spacetimes with trivial topology. In this class of spaces leads to the same results already present
in the literature. However, the weak gauge principle has non-trivial physical implications on
spacetimes with non-trivial second integer cohomology group with non-vanishing torsion.
Note that this is a radical difference with previous works on this matter which have been based
on manifolds without torsion.

Now let us briefly explain some of the arguments that have led us to introduce the weak
gauge principle. On Minkowski spacetime, a charged matter field ψ with charge qψ changes
under a gauge transformation A′ = A + dα as ψ ′ = eiqψαψ . If we consider another charged
matter field φ with charge qφ , then under the same gauge transform it changes as φ′ = eiqφᾱφ

with dα = dᾱ. Since the spacetime is contractible we have ᾱ = α + const and the difference
in the gauge transformation of the two fields is a global phase which can be gauged away
after a redefinition of φ. Therefore, in this spacetime the usual formulation of the U(1) gauge
invariance of the theory for two different charged matter fields is simply written as

A′ = A + dα, ψ ′ = eiqψαψ, φ′ = eiqφαφ,

with the same function α for both fields (the strong gauge principle).
On the other hand, it is well known that on a general spacetime M the gauge field {Ai}i∈I

and the charged matter fields {φi}i∈I , {ψi}i∈I are described by families parametrized by a good
covering {Ui}i∈I of M (see section 3 for more details). Therefore the transformation of the
fields under a gauge transformation on Uij = Ui ∩Uj between Uj and Ui should be written as

Ai = Aj + dβij , ψi = eiqψβij

ψj , φi = eiqφβ̄ij

φj .

Although for each contractible open set Uij we still have βij = β̄ij + const, notice that in
general, a non-trivial topology of the spacetime might make it impossible to globally gauge
away the difference between the constants {βij }i∈I , {β̄ij }i∈I . Indeed a U(1) redefinition of
φj affects β̄ij not only for a given i but for every value of the index i. In these conditions
we say that the two families of fields are related by a ‘weak gauge transformation’. These
observations naturally lead us to introduce the notion of weak gauge equivalence for the
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possible configurations {Ai, φi, ψi}i∈I , of the system formed by the gauge field and the
charged matter fields.

Let us point out that the weak gauge principle could also be hinted from a study of
the symmetries of the Lagrangian of the Standard Model of particle physics. In this theory,
matter fields interact through the mediation of vector bosons, as a consequence the Lagrangian
is invariant under weak gauge transformations, that is, there is a global U(1) symmetry
associated with each matter field. On the contrary in a generic Lagrangian, with mixed neutral
interaction terms as, say, ψ3(φ∗)2, with 3qψ − 2qφ = 0, there is only a global U(1) symmetry
that involves all the matter fields at the same time, that is α = ᾱ. The weak gauge principle
naturally embodies the U(1) matter field-dependent redefinition freedom of the Standard
Model, whereas the strong gauge principle does not.

In this context the weak gauge principle establishes the ‘intersection rule’ that expresses
the relationship between fields defined on any two overlapping open sets of the covering. From
a mathematical point of view the intersection rule says that the charged matter fields are sections
of Hermitian complex line bundles (or equivalently principal U(1)-bundles). However, let us
point out that the gauge field {Ai}i∈I does not determine, in general, a principal U(1)-bundle.
This is due to the following two reasons:

(a) On the first place, the bundle may not exist at all. The family of 2-forms {dAi}i∈I

determines a global closed 2-form F on M. It is well known that one can only associate
with it a U(1)-principal bundle under appropriate integrality conditions.

(b) Second, even if the principal U(1)-bundle exists, it might not be unique, since it is only
determined up to flat bundles on M. It is well known that the family of isomorphism
classes of flat U(1)-bundles is parametrized by the cohomology group H 1(M,U(1)). In
particular the non-trivial flat bundles are in one-to-one correspondence with the torsion
elements of H 2(M, Z).

But even for the cases in which a principal bundle does exist, the weak gauge principle
requires to consider the whole family of principal U(1)-bundles determined by the gauge field.
In fact, given a pair of charged fields ψ, φ, each of them determines a line bundle Pψ, Pφ . Now
the weak gauge principle is equivalent, in this case, to saying that the line bundle Pψ differs
from Pφ by a flat line bundle K. That is Pψ = K ⊗ Pφ , where K represents, in geometrical
terms, the holonomy difference of these two line bundles.

From a physical point of view, the class [K] ∈ H 1(M,U(1)) measures the relative
Aharonov–Bohm interference of ψ and φ, which controls the different behaviour of
the particles under topological Aharonov–Bohm experiments. If this class is trivial the
phenomenology reduces to the standard one given by the strong gauge principle.

As a consequence, the line bundles Pψ, Pφ which describe the charged fields are in general
not associated with the same U(1)-bundle but to different members of the family of U(1)-
bundles determined by the gauge field. If K is not trivial, this in sharp contrast with the standard
description which assumes that all the charged fields are associated with the same principal
bundle. This is essentially the mathematical content of the weak gauge principle. Therefore,
the weak gauge principle differs in an essential way from the ordinary gauge principle in
spacetimes M with a non-vanishing torsion subgroup of H 2(M, Z). To our best knowledge
this fact has not been previously recognized in the literature.

In the paper we analyse in detail the implications that the weak gauge principle has for
charge quantization. In order to make the paper accessible to a wider audience, we have
chosen to carry out this analysis by means of Čech cocycles rather than using the geometrical
theory of bundles. We start just from the beginning with a good covering so that the relevance
of triple intersections and Čech cohomology becomes clear. In some sense we continue the
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generalization of Wu and Yang’s paper made by Horváthy [23] who studied the monopole
in a generic covering by considering the charge quantization argument in a generic field
configuration. Since we show explicitly how the involved bundles are defined, the physically
oriented reader may find this approach particularly clarifying while the mathematically oriented
reader may find interesting how the cocycle condition arises from physical considerations based
on the gauge principle and the existence of a matter field.

We shall see that the simple existence of a non-exact electromagnetic field on spacetime
implies the quantization of charges and therefore the magnetic monopole is just one of the many
possible non-exact field configurations leading to charge quantization. This fact should not
come as a surprise since it has been recognized a number of times since Wu and Yang’s work
(see also [3, 18, 21]) that the quantization of the electric charge is related to the classification
of principal U(1)-bundles in terms of Chern classes.

However, a main difference of this paper with respect to previous works is the fact that
on spacetimes with torsion in the second integral cohomology group, the non-triviality of the
bundles associated with the charged fields does not necessary imply charge quantization.

Another consequence of the theory for spacetimes with torsion is the fact that it gives rise
to two natural quantization units that we identify with the electric quantization unit (realized
inside the quarks) and with minus the electron charge. In this framework the colour charge
can have a topological origin, with the number of colours being related to the order of the
torsion subgroup of H 2(M, Z).

We also point out that the quantization of charge may be due to a weak non-exact
component of the electromagnetic field extended over cosmological scales if at those scales
a non-trivial topology of the spacetime manifold arises. This component could have formed
in the initial instants of the Universe when its topology acquired a final form. Then the
expansion of the Universe would have decreased its magnitude making it undetectable in
today’s experiments.

Let us mention that recent discussions [9, 19] on the role of coverings in the deduction
of Dirac’s quantization condition led us to believe that a treatment of charge quantization in
general coverings and for general spacetimes like ours could help to clarify the assumptions
that stay at the heart of topological quantization.

In order to finish this introduction, we recall that over the years other approaches have
been introduced in order to give an explanation of the quantization of the electric charge.
They involve topological arguments [10, 25, 34, 35], geometric quantization [38, 30], path
integral considerations [1], anomaly cancellations [2, 7, 13, 15–17], Kaluza–Klein theory
[26], a particular analysis of the Aharonov–Bohm potentials [4], loop quantization [11] or
a particular quantum theory of the electric charge [39]. The Dirac quantization condition
can be derived from the quantization of the total angular momentum [20] and can be related
to the associativity of finite translations [24, 31]. However, there have been also claims
of inconsistency of Dirac’s quantization condition in second quantization [22]. Moreover,
Schwinger suggested that the magnetic charge should be an even integer of the Dirac unit
[36, 37]. These arguments are, however, not generally accepted [20, 32, 33].

2. The gauge principle in Minkowski spacetime

The theory of connections was developed by mathematicians in the 50s and only in the 70s
the relation with physics and with the gauge principle was fully realized. Nowadays the
electromagnetic field is described by a connection on a principal U(1)-bundle and a charged
particle field is regarded as a global section of an associated bundle which is constructed from
a representation of U(1) on the vector space C. Only particles having a quantized charge can
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be implemented in this mathematical setting and, for this reason, to recast the Dirac original
argument in modern terms means to justify why this mathematical description is essentially the
only one available. Therefore, for the moment we forget about the mathematics of principal
fibre bundles and connections and consider the simple case of Minkowski spacetime. We
define the gauge principle and only later we move on to see what happens in spacetimes with
non-trivial topology.

Let M be a spacetime with a metric (+ − −−) and the topology of R
4 (Minkowski

spacetime). The electromagnetic field F is a closed 2-form field on M. The matter field of a
particle is a mapping ψ : M → C. We shall denote matter fields with the letters ψ and φ. We
shall explicitly use two matter fields since the quantization of charge is a relation between the
charges of two fields. The meaning of what follows would be therefore clearer working with
two matter fields at the same time. Moreover, we shall need at least two matter fields in order
to distinguish between the weak and the strong gauge principles (see below). It is understood
that our study can be straightforwardly generalized to any number of fields.

Since, the spacetime is contractible there is a potential (1-form) field A such that F = dA;
moreover let A′ be another potential, we have d(A − A′) = 0 and since M is contractible
(M simply connected would suffice here) we have A′ = A + dα, where α : M → R is a
function.

By definition the triplets (A,ψ, φ), (A′, ψ ′, φ′) are related by a weak gauge
transformation if there exist functions α, ᾱ differing by a constant h = α − ᾱ and such
that

A′ = A + dα, (1)

ψ ′ = eiqψαψ, (2)

φ′ = eiqφᾱφ. (3)

If h = 0 the two triplets are related by a strong gauge transformation. The constant qψ

(respectively qφ) is the electric charge of the matter field ψ (respectively φ). The charges are
quantized if there exists q ∈ R

+ such that qψ = mq, qφ = nq with n,m ∈ Z coprime. Note
that if q exists then it is defined univocally by the requirement that m and n are coprime (i.e.
there are integers M,N such that Mm + Nn = 1). Note also that by charges we shall always
mean those parameters that appear in the gauge transformation. In general the Lagrangian
depends on them and therefore they will have some experimental consequences from which
their values can be recovered. We stress that we do not define the charge as the integral
over a suitable surface of the 0-component of a certain conserved current. We also stress that
the word quantization is used as a synonym for discretization. Making this choice we have
followed the most used, although sometimes misguiding, terminology.

Note that in most treatments only one field is considered and therefore the difference
between weak and strong gauge transformations cannot be appreciated. Note also that the
definition of weak gauge transformation is symmetric between ψ and φ since α and ᾱ differ
by a constant and therefore α can be replaced by ᾱ in equation (1). In the presence of many
fields one would need a different function α for each field. In the following the calculations
will make sense in both the weak and strong cases.

There is no universally accepted definition of gauge principle but the following definition
seems to summarize the most relevant features. A physical theory of the electromagnetic field
satisfies the gauge principle if

(Weak/strong) Gauge principle. The physical states of the theory are the equivalence classes
[A,ψ, φ] where two elements (A′, ψ ′, φ′), (A,ψ, φ) are equivalent, (A′, ψ ′, φ′) ∼ (A,ψ, φ),
iff they are related by a (weak, strong) gauge transformation for a suitable function(s) α. The
set of physical states will be denoted {[A,ψ, φ]}.
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The difference between weak and strong gauge principles is not important in the
Minkowskian case since the Lagrangian is usually invariant under symmetry transformations
that multiply a field by a constant phase while keeping all the other fields constant. However,
the difference will be relevant in a non-contractible topology. This feature has been overlooked
in the past. Indeed, in the physical literature the gauge principle only appears in its strong
version.

The gauge principle has been generalized to non-Abelian groups and has found extensive
applications in quantum field theory. In the Standard Model the electromagnetic gauge
transformation is imbedded in a non-trivial way in the electroweak gauge group SU(2)⊗U(1).
In this case we can think of the U(1) gauge invariance of the present work as the U(1) sector
of the electroweak group. Indeed, the quantization of the electric charge follows from the
quantization of the U(1) sector (its charge is usually denoted with the letter Y). For simplicity,
but without loss of generality, we shall ignore this aspect here. We shall refer to the U(1)

gauge invariance as the electromagnetic gauge invariance and to the constants qψ, qφ , as the
electric charges.

We also stress that in the whole work we shall remain in a classical field theory approach
and we will never be involved with the quantum theory. More precisely, the only quantum
feature that we shall use is that of considering a particle as mathematically represented by
a wavefunction rather than by a worldline; the dynamics, however, will remain completely
classical, i.e. dictated by a Lagrangian and we will never use second quantization procedures.
Moreover we shall never be involved with explicit expressions for the action or the observables.
Our assumption is that the action and the observables have values dependent only on the
physical state and not on its representant. Therefore they should be gauge invariant.

3. The gauge principle in a non-trivial topology

Let M be a curved spacetime with a metric gµν of signature (+−−−). Let F be a closed 2-form
field on M which we do not assume to be contractible. Let {Ui} be a good covering of M i.e.
the open sets Uα are contractible and so are their arbitrary intersections [8, p 28]. We denote
by Uij = Ui ∩Uj ,Uijk = Ui ∩Uj ∩Uk , the double and triple intersections, respectively. Note
that the Latin index refers to the open set considered while the spacetime tensor indices are
denoted with Greek letters. We have no compelling experimental evidence that our spacetime
is not contractible thus we have in fact no evidence that more than one open set are required
to cover M. Nevertheless, new investigations on the topology of the Universe had appeared in
recent years [27, 28] and even some evidence of a non-trivial cosmological topology has been
pointed out [29]. The topological argument explores the consequences of a non-contractible
topology assumption. We shall give here a form to the original argument given by Dirac that
is clearly related to the concept of Čech cohomology. In fact the Čech cohomology studies if
a principal U(1) fibre bundle can be constructed over M and the Dirac argument essentially
implies that the conditions that allow its existence are fulfilled.

In the previous section we have introduced the gauge principle. It is natural to generalize
it to the present situation where we have many open sets Ui . First, we can repeat the same
steps as before and see that in each open set Ui , given F on M, we have a potential Ai . Thus
we can define what is a gauge transformation in each Ui . The same holds for a generic
contractible open set U ⊂ M for which a potential AU can be defined. In general if the set
considered belongs to the good covering we denote the superscript with i in place of U. Here
the contractible open sets play the role of the contractible spacetime considered previously.
Note that there are special fields that are directly observable like F and g while others are not,
like the electromagnetic fields Ai that receive for this reason an index of the open set where
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they are defined. The reason is that in principle we may allow some discontinuity between Ai

and Aj in Uij as only the continuity of observable quantities really matters.
It remains the question of the observability of matter fields. If they are directly observable

then we should not add to them an index corresponding to the open set. However, we want to
reproduce the previously stated gauge principle in a given open set U and from that we already
know that ψ cannot be observed completely because of the gauge principle. Thus we add an
index i, and write ψi in correspondence of the open set Ui . In general the field will have a
representant ψU in each contractible open set U and we shall regard the triplet (A,ψ, φ) as the
collection {(AU,ψU, φU)} for U ⊂ M contractible. Given the matter fields and the potential
on each open set U, we shall use the notation (A,ψ, φ) ≡ {(AU,ψU, φU)}.

We define a weak gauge transformation on Ui as

A′i = Ai + dαi, (4)

ψ ′i = eiqψαi

ψi, (5)

φ′i = eiqφᾱi

φi, (6)

where hi = αi − ᾱi is a constant, and analogously for more general contractible open sets U
not belonging to {Ui}. The strong gauge transformation satisfies hi = 0. We shall also say
that the fields (A′, ψ ′, φ′) and (A,ψ, φ) are gauge related in U. Then the (weak/strong) gauge
principle is generalized as

(Weak/strong) Gauge principle. The configurations are those collections {(AU,ψU, φU)}
such that if U ⊂ V, (AV ,ψV , φV )|U ∼ (AU,ψU, φU) where ∼ means that the fields between
brackets are gauge related.

The physical states of the theory are the equivalence classes [A,ψ, φ] of configurations,
where two configurations (A′, ψ ′, φ′), (A,ψ, φ) are equivalent, (A′, ψ ′, φ′) ∼ (A,ψ, φ), iff
for each open set U they are related by a gauge transformation for a suitable function αU .

The set of physical states will be denoted by S = {[A,ψ, φ]}.
The specification of a configuration (Ai, ψi, φi) in the good covering {Ui} determines

uniquely the state since it determines a representant in each contractible open subset.

Remark 3.1. If the charges are quantized qψ = mq, qφ = nq with m and n coprime then, since
what really matters is the phase factor in the gauge transformation, the physics is determined
by the class whose elements are related by α′i = αi + ai with ai ∈ 2π

mq
Z (and analogously for

ᾱi and āi). In the strong case since αi = ᾱi , ai = āi , in the end we have ai ∈ 2π
q

Z. In the

weak case α and ᾱ can be redefined freely as above and therefore hi ∈ R
/(

2π
mnq

Z
)
.

If the charges are not quantized and we are in the strong case αi ∈ R, ai = āi = 0.
If we are in the weak case, regardless of the quantization of charges, αi ∈ R

/(
2π
qψ

Z
)
, ai ∈

2π
qψ

Z, and analogously for ᾱi , āi . Denoting by � the additive group given by the finite linear

integer combinations of the real numbers 2πq−1
ψ , 2πq−1

φ , we have hi ∈ R/�. The quantized
case considered previously is therefore a particular case of this one.

3.1. Intersection rule

The gauge principle implies that for a given configuration if U,V ⊂ M, (AV ,ψV , φV )|U∩V ∼
(AU,ψU, φU)|U∩V . Let U = Ui and V = Uj then U ∩ V = Uij and we find that there are
functions βij (β̄ij ) : Uij → R such that

Ai = Aj + dβij , (7)
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ψi = eiqψβij

ψj , (8)
φi = eiqφβ̄ij

φj , (9)

where kij = βij − β̄ij is a constant which vanishes in the strong case. The first equation
follows necessarily from the fact that both potentials have the same exterior differential in
Uij , the remaining two require the gauge principle. We shall refer to the system (7)–(9) as the
intersection rule since it takes place in the intersection Uij and relates fields from different
sets.

Without loss of generality we can assume βij = −βji (β̄ij = −β̄j i). Indeed equation (7)
for the pairs (i, j) and (j, i) implies that βji and −βij differ by a constant and thus we can
use the latter instead of the former in equation (7) for the pair (j, i). Analogously equation (8)
for the pairs (i,j) and (j,i) implies that eiqψβji = e−iqψβij

, thus again −βij can be used in place
of βji and analogously for φ.

Remark 3.2. If the charges are quantized qψ = mq, qφ = nq with m and n being coprime
then, since what really matters is the phase factor in the intersection rule, the physics is
determined by the class whose elements are related by β ′ij = βij + oij with oij ∈ 2π

mq
Z (and

analogously for β̄ij and ōij ). In the strong case since βij = β̄ij , oij = ōij we have oij ∈ 2π
q

Z.

In the weak case β and β̄ can be redefined freely as above and therefore kij ∈ R
/(

2π
mnq

Z
)
.

If the charges are not quantized and we are in the strong case then βij ∈ R, and
oij = ōij = 0.

If we are in the weak case, regardless of the quantization of charges, βij ∈ R
/(

2π
qψ

Z
)
, oij ∈

2π
qψ

Z, and analogously for β̄ij , ōij . Moreover, kij ∈ R/�. The quantized case considered
previously is therefore a particular case of this one.

Assume that the physical theory considered satisfies the gauge principle and hence the
intersection rule. The actual physical problem depends both on F and on the functions βij

(and β̄ij ) that appear in the intersection rule. Indeed βij does not depend solely on F and on
the gauge choice of Ai in each set. Let us comment this more extensively. First note that βij

changes under a gauge transformation on each Ui,A
′i = Ai + dαi as

β ′ij = βij + αi − αj . (10)

Now fix the gauge, i.e. a choice of Ai in each set. This choice fixes βij only up to an additive
constant, that is, the knowledge of F and the assumption that the intersection rule (7) holds do
not determine βij completely. Thus the physical problem is determined both by F and, given
a choice of gauge in each set, by a βij compatible with that choice (i.e., satisfying (7)). We
shall call that βij the physical βij since suitable physical experiments may measure its value
up to transformations β ′ij = βij + oij with oij ranging in a suitable domain (remark 3.2) for a
given gauge choice.

This is exactly what happens in the Aharonov–Bohm effect. Let γ be a closed curve
on spacetime. Choose events e on the curve and on suitable intersections Uij in such a way
that the curve γ between two successive events along the curve lies entirely in the open
set Ui . For convenience relabel the sets in such a way that i takes the successive values
i = 1, . . . , N and identify N + 1 with 1. Denote by ei the successive events, ei ∈ Ui−1i . The
interference of a matter field with itself in an Aharonov–Bohm experiment along the closed
curve γ is determined by the gauge invariant quantity which does not depend on the choice of
{ei} [40, 1]

	[γ ] = exp

{
iqψ

∑
i

[(∫ ei+1

γ ei

Ai

)
+ βii−1(ei)

]}
. (11)
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Clearly the functions βij are not defined up to an arbitrary constant, otherwise the interference
would be arbitrary. Indeed, they are defined, in a given gauge, only up to terms 2π

qψ
Z. Therefore

there is some more physical information encoded in the functions βij than what is determined
alone by equation (7). If γ is a boundary, γ = ∂�, it is not difficult to show that∑

i

[(∫ ei+1

γ ei

Ai

)
+ βii−1(ei)

]
=

∫
�

F −
∑

Uijk :�∩Uijk 
=0

cijk (12)

where in the next section cijk = βij + βjk + βki will be proved to be constant coefficients
belonging to 2π

qψ
Z. As a consequence if γ is contractible to a point

	[γ ] = exp

{
iqψ

∫
�

F

}
, (13)

which is the better-known, but less general, expression for the interference phase. In
a contractible topology the weak gauge principle would therefore lead to the usual
phenomenology, i.e. the interference phase measured in the Aharonov–Bohm experiment
would have the usual expression. However, in a truly non-contractible spacetime there
does not exist an a priori constraint for the physical βij and therefore kij may differ from
zero leading to a topological Aharonov–Bohm interference even for neutral particles (see
section 5). This observation clarifies that strong and weak gauge principles can be distinguished
in a spacetime having non-contractible topology. Since at present, the topology of the Universe
has not yet been determined, we cannot yet rule out the weak gauge principle possibility.

Summarizing we can say that the physics is determined by a class [Ai, βij (, β̄ij ), ψi, φi]
(each term is regarded as a set of maps, for instance βij represents the set of maps
βij : Uij → R) satisfying the intersection rule, and where two elements in the class are
related by

(A′i , β ′ij (, β̄ ′ij ), ψ ′i , φ′i ) ∼ (Ai + dαi, βij + αi − αj (, β̄ij + ᾱi − ᾱj ), eiqψαi

ψi, eiqφᾱi

φi)

with αi suitable functions (note that k′ij = kij + hi − hj ).

4. The topological argument

Let us come to the core of the topological argument. We consider here only the field ψ but
analogous considerations hold for φ. The reader will recognize the relation with the Čech
cohomology.

Consider a triple intersection Uijk . We already know that in that set there is a function βij

such that Ai = Aj + dβij and analogously for the pairs (i, k), (j, k). Moreover, summing up
the three equations just obtained we get

d(βij + βjk + βki) = 0 ⇒
cijk = βij + βjk + βki = const on Uijk.

(14)

The reader familiar with the Čech cohomology may realize that the constants cijk define a
class in the Čech cohomology group H 2(M, R), two elements in the same class being related
by c′

ijk = cijk + oij + ojk − oik for suitable constants oij . In fact, there is an isomorphism

between the de Rham cohomology group H 2
dR(M, R), to which [F ] belongs, and the Čech

cohomology group H 2(M, R) that sends [F ] to [cijk]. However, note that we are identifying a
precise representant of [cijk], the physical cijk , thanks to the information that comes from the
physical βij i.e., the one that satisfies all the intersection equations and not only (7). Repeating
the same calculations for φ we find that

cijk − c̄ijk = kij + kjk + kki, (15)
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and therefore [cijk] = [c̄ijk] as classes belonging to H 2(M, R) even in the weak gauge principle
case although the actual representant may change from matter field to matter field.

Remark 4.1. Consider the special case in which the charges are quantized. The physical βij

is itself undetermined. Thus changing β ′ij = βij + oij we obtain c′
ijk = cijk + oij + ojk + oki .

In the strong case oij ∈ (2π/q)Z thus the intersection rules (7), (8) and (9) determine
[qcijk] ∈ Z2(M, R)/B2(M, 2πZ) while [F ] alone only determines [cijk] ∈ H 2(M, R). In
the weak case oij ∈ (2π/mq)Z, ōij ∈ (2π/nq)Z thus [mqcijk] ∈ Z2(M, R)/B2(M, 2πZ)

and analogously for [nqc̄ijk]. Moreover, as elements of Z2(M, R)/B2(M, 2πZ) the classes
n[mqcijk] and m[nqc̄ijk] are in general different.

If the charges are not quantized and we are in the strong case [cijk], [c̄ijk] ∈ Z2(M, R).
If the charges are not quantized and we are in the weak case [qψcijk] ∈

Z2(M, R)/B2(M, 2πZ) and analogously for [qφc̄ijk].

The topological argument goes on to prove that cijk are integer constants up to a common
factor. Indeed, let us use repeatedly the intersection rule for ψ on Uijk

ψi = eiqψβij

ψj = eiqψ (βij +βjk)ψk

= eiqψ (βij +βjk+βki )ψi = eiqψcijkψi. (16)

Since this equation holds for any field ψ we have

qψcijk = 2πmijk, (17)

with mijk ∈ Z. Repeating the argument for φ,

qφc̄ijk = 2πnijk, (18)

with nijk ∈ Z, and using the relation between cijk and c̄ijk we obtain (we assume the charges
to be different from zero, otherwise the issue of the quantization of charge would have a trivial
affirmative answer)

2π

qψ

mijk − 2π

qφ

nijk = kij + kjk + kki . (19)

We are going to separate the study into the strong and the weak cases. Although, the
former will turn out to be a special case of the latter we shall consider them separately.

4.1. The strong case

In the strong case (kij = 0) the previous equation implies that if for a certain Uijk, c̄ijk 
= 0
(and hence nijk 
= 0) then qψ/qφ is rational and therefore the charges are quantized. In this
case there are m, n coprime integers such that qψ = mq, qφ = nq

qψ

qφ

= mijk

nijk

= m

n
, (20)

thus mijk/m ∈ Z, nijk/n ∈ Z and hence qcijk ∈ 2πZ. Moreover, since the charges are
quantized the physical βij is determined only up to transformations β ′ij = βij + oij with
oij ∈ 2π

q
Z and hence [qcijk] ∈ H 2(M, 2πZ) or

[
qF

2π

] ∈ H 2(M, Z). If for any Uijk, cijk = 0
one cannot infer whether the charges are quantized or not, and in the former case, by the same
argument used above, [qcijk] ∈ H 2(M, 2πZ) is the trivial class.

Thus we have proved that there are only two possibilities:

(A1) The charges are not quantized and for any Uijk the physical cijk satisfies cijk = 0.
(A2) The charges are quantized and [qcijk] ∈ H 2(M, 2πZ) (i.e., [ q

2π
F ] ∈ H 2(M, Z)).
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These two possibilities express the old Dirac’s quantization argument in the language of Čech
cohomology. Note that in both cases there exists a principal U(1)-bundle Q with transition
functions gij = eiqβij

, since qcijk ∈ 2πZ. The matter fields can then be regarded as sections
of bundles associated with Q through representations ρ : U(1) → GL(1, C), where ρ is
u → um for ψ and u → un for φ.

If F is exact this mathematical setting for the matter fields is not compulsory. Indeed, in
that case there are constants bij ∈ R such that

(βij − bij ) + (βjk − bjk) + (βki − bki) = 0. (21)

Therefore, there exists a (R, +)-principal bundle R with transition functions gij = βij − bij .
The matter fields can then be regarded as sections of vector bundles associated with R.

4.2. The weak case

In the weak case the deduction of the quantization condition is more involved. We said
that [cijk] = [c̄ijk] as classes belonging to H 2(M, R). This should be expected since the
isomorphism between H 2(M, R) and H 2

dR(M, R) associates with both [cijk], [c̄ijk] the
class [F ] of the electromagnetic field. By remark 3.2 and equation (19) it follows
that [kij ] ∈ H 1(M, R/�). We mention that H 1(M, R/�) is the set of isomorphism
classes of principal R/�-bundles. For a treatment of R/�-bundles we refer the reader to
[8, section 2.5].

There are two cases:
(1) If the class [cijk] = [c̄ijk] ∈ H 2(M, R) is not trivial (F is not exact) by Poincaré

duality we can find a closed surface S such that
∫
S
F 
= 0. It can also be shown that this

integral can be expressed as the sum of some coefficients cijk such that Uijk ∩ S 
= 0 (see for
instance [1]) and analogously for c̄ijk . The equations (17) and (18) imply

qψ

∫
S

F ∈ 2πZ, (22)

qφ

∫
S

F ∈ 2πZ, (23)

and therefore the charges are quantized. Substituting qψ = mq, qφ = nq and using the
fact that m and n are coprime we obtain

∫
S
F ∈ 2π

q
Z, that is

[
q

2π
F

] ∈ H 2(M, Z). From
equations (18) and (15)

ncijk = 2π

q
nijk + n(kij + kjk + kki). (24)

Using equation (17) we obtain (nN + mM = 1)

cijk = 2π

q
(Nnijk + Mmijk) + Nn(kij + kjk + kki), (25)

c̄ijk = 2π

q
(Nnijk + Mmijk) − Mm(kij + kjk + kki). (26)

Multiplying equation (15) by mn and using (17) and (18) we obtain

mnq(kij + kjk + kki) ∈ 2πZ, (27)

therefore, as (remark 3.2) mnqkij ∈ R/2πZ, the coefficients mnqkij define a cocycle in
the Čech cohomology. It has been previously pointed out that under gauge transformations
k′ij = kij + hi − hj , thus

[mnqkij ] ∈ H 1(M, R/(2πZ)). (28)
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In other words, in the weak quantized case there exists a flat bundle K with transition functions
eimnqkij

. We call the class k = [mnqkij ], the (relative) interference class.
From equation (27) it follows that mqcijk ∈ 2πZ and analogously for c̄ijk . But we already

know (remark 4.1) that [mqcijk] ∈ Z2(M, R)/B2(M, 2πZ) and thus

[mqcijk] ∈ H 2(M, 2πZ), (29)

[nqc̄ijk] ∈ H 2(M, 2πZ). (30)

These classes can be trivial or not, in any case we can construct two principal U(1)-bundles
Pψ and Pφ with transition functions eimqβij

and einqβ̄ij

, respectively. Consider the short exact
sequence

0 → 2πZ → R
eix−→ U(1) → 1, (31)

where we identify U(1) and R/2πZ. It gives rise to the long exact sequence

0 → H 1(M, 2πZ) → H 1(M, R)
σ−→

H 1(M,U(1))
η−→ H 2(M, 2πZ)

γ−→ H 2(M, R) → · · · ,
where Im(η) = Ker(γ ) is the torsion subgroup of H 2(M, 2πZ). Equation (15) multiplied by
mn reads

n[mqcijk] − m[nqc̄ijk] = η([mnqkij ]), (32)

or

K = P n
ψ ⊗ P −m

φ . (33)

If the manifold has vanishing torsion then K is trivial. One should be careful here because in
general although

η([mnqkij ])ijk = mnq(kij + kjk + kki), (34)

this class is not necessarily trivial as mnqkij does not take values in 2πZ.
Consider the functions

q
ij

MN = Mmβij + Nnβ̄ij , (35)

where the index MN recalls that the constants M and N such that Mm + Nn = 1 are not
unique. If M ′ and N ′ is another pair with the same property then it is easy to show that there
exists an integer j such that M ′ = M + jn,N ′ = N − jm. Thus

q
ij

M ′N ′ = q
ij

MN + jmnkij . (36)

The redefinition freedom of βij and β̄ij (remark 3.2) implies that q
ij

MN(x) ∈ R
/

2π
q

Z.
Moreover, according to equations (25) and (26)

ξ
ijk

MN = q
ij

MN + q
jk

MN + qki
MN = 2π

q
(Nnijk + Mmijk) ∈ 2π

q
Z

define a class
[
qξ

ijk

MN

] ∈ H 2(M, 2πZ) and the transition functions eiqq
ij

MN define a principal
U(1)-bundle QMN . equation (36) implies that

QM ′N ′ = QMN ⊗ Kj . (37)

Since K belongs to the torsion, γ
([

qξ
ijk

MN

])
does not depend on the choice M,N . From

equation (29) we have

γ ([mqcijk]) = mq[F ] ∈ H 2(M, R), (38)
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and from equations (28) and (25)

γ ([mqcijk]) = mγ
([

qξ
ijk

MN

])
, (39)

so that

γ
([

qξ
ijk

MN

]) = q[F ] ∈ H 2(M, R). (40)

In other words, the classes on H 2(M, 2πZ) associated with the principal bundles QMN all
project on the electromagnetic field class on H 2(M, R). We find again that

[
qF

2π

]
is an integer

class.
The torsion subgroup is a finitely generated Abelian group. The interference class

determines a flat bundle K such that Kord η(k) is trivial, where ord η(k) is the order of the
Abelian subgroup generated by the image η(k) of the interference class on H 2(M, 2πZ). As
a consequence

QM+n ord η(k)N−m ord η(k) = QMN, (41)

and the principal bundle denoted by Qordη(k) and defined by

Qord η(k) ≡ Q
ord η(k)

MN (42)

does not depend on the choice of M,N .
Now, note that mβij = mq

ij

MN + Nmnkij and nβ̄ij = nq
ij

MN − Mmnkij so that

Pψ = Qm
MN ⊗ KN (43)

Pφ = Qn
MN ⊗ K−M (44)

and

QMN = P M
ψ ⊗ P N

φ (45)

which hold for every pair M,N , satisfying Mm + Nn = 1. If η(k) is trivial then K is
trivial, ord η(k) = 1 and Q = QMN does not depend on the choice M,N . Moreover,
equations (43), (44) show that the bundles Pψ and Pφ admit a well-defined root Q as in
the strong case. Conversely, if a bundle Q exists such that Pψ = Qm and Pφ = Qn then
equation (33) shows that K is trivial.

Assume that K is trivial. We already know that there is a root principal U(1)-bundle Q.
Moreover, there are constants Kij ∈ 2π

mnq
Z such that

kij + kjk + kki = Kij + Kjk + Kki.

Define oij = −NnKij ∈ 2π
mq

Z and ōij = MmKij ∈ 2π
nq

Z so that Kij = ōij − oij . Redefine

β ′ij = βij + oij and analogously for β̄ij , then due to remark 4.1, equation (15) can be written
as

c′
ijk = c̄′

ijk, (46)

or

(β ′ij − β̄ ′ij ) + (β ′jk − β̄ ′jk) + (β ′ki − β̄ ′ki) = 0

which can be regarded as the condition for the existence of a (R, +) principal bundle.
Since the fibre is contractible the bundle is trivial and hence there are functions αi(x)

such that β ′ij = β̄ ′ij + αi − αj or k′ij = αi − αj . A weak gauge transformation that
sends k′ij to zero exists iff αi = hi + α for a suitable function α and for suitable constants
hi ∈ R

/(
2π

mnq
Z

)
. This condition is satisfied iff [mnqk′ij ] ∈ H 1(M,U(1)) is trivial. Thus if
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[mnqk′ij ] ∈ H 1(M,U(1)) is trivial we are actually in the strong case as the condition kij = 0
is preserved under strong gauge transformations.

(2) It could be that although [cijk] ∈ H 2(M, R) is trivial (i.e. [cijk] ∈ B2(M, R)) the
charges are not quantized. In this case there are constants bij ∈ R such that cijk = bij + bjk+ bki

thus (βij − bij ) + (βjk − bjk) + (βki − bki) = 0. The functions βij − bij can be regarded
as the transition functions of a principal bundle of structure group (R, +) as the previous
condition states that the cocycle condition for the transition functions is satisfied. Since the
fibre is contractible the principal bundle is trivial and therefore there are functions αi such
that βij − bij + αi − αj = 0. This last equation means that there is a particular gauge
in each Ui such that the functions βij become constant, βij = bij ∈ R

/
2π
qψ

Z (where we

have used the indeterminacy of βij ) and therefore, since the coefficients kij are constant,
β̄ij = bij − kij ∈ R

/
2π
qφ

Z are constant too. The equations (17), (18), provide further
constraints

qψ(bij + bjk + bki) = 2πmijk, (47)

qφ(b̄ij + b̄jk + b̄ki) = 2πnijk. (48)

We can associate with the constants bij (respectively b̄ij ) a flat bundle of transition functions
eiqψbij

(respectively eiqφ b̄ij

) which can be trivial or not. From equation (47) it follows that
[qψcijk] ∈ H 2(M, 2πZ) and analogously for [qφc̄ijk]. The classes of H 2(M, 2πZ) that are
trivial when considered as classes of H 2(M, R) belong to the torsion of H 2(M, 2πZ).

Note that if [qψcijk], [qφc̄ijk] ∈ H 2(M, 2πZ) are trivial then there are functions γ i, γ̄ i

such that bij − γ i + γ j ∈ 2π
qφ

Z and b̄ij − γ̄ i + γ̄ j ∈ 2π
qψ

Z. These equations mean

that the functions βij , β̄ij can be redefined so that there exist functions αi, ᾱi such that
βij + αi − αj = 0, β̄ij + ᾱi − ᾱj = 0. In particular it is possible to find a weak gauge
transformation such that eiqψβij = 1 or eiqφβ̄ij = 1 but these gauges do not necessarily coincide.
They coincide iff there exist constants hi ∈ R/� such that kij = hi − hj since in this case the
terms hi can be removed with a weak gauge transformation. Since [kij ] ∈ H 1(M, R/�) we
conclude that the problem reduces to the strong case if [kij ] is trivial.

Summarizing, there are two possibilities:

(B1) The charges are not quantized, [kij ] ∈ H 1(M, R/�), [cijk] = [c̄ijk] ∈ H 2(M, R) is
trivial and [qψcijk], [qφc̄ijk] ∈ H 2(M, 2πZ). If these three classes are trivial we are in
the strong case (A1).

(B2) The charges are quantized and [mqcijk], [nqc̄ijk] ∈ H 2(M, 2πZ) satisfy γ ([mqcijk]) =
m[qF ], γ ([nqc̄ijk]) = n[qF ] and

[
qF

2π

]
is an integer class. There are principal

U(1)-bundles Pψ and Pφ associated with the classes [mqcijk], [nqc̄ijk], that satisfy
P n

ψ ⊗ P −m
φ = K where K is a flat bundle associated with the class η([mnqkij ]) where

[mnqkij ] ∈ H 1(M,U(1)) is the interference class. K is trivial iff a root principal U(1)-
bundle Q exists such that Pψ = Qm,Pφ = Qn. For every M,N such that Mm+Nn = 1
equations (43), (44) and (45) hold. In particular the principal bundle defined by (42)
does not depend on the choice of M,N . If [mnqkij ] ∈ H 1(M,U(1)) is trivial we are in
the strong case (A2).

From the above study we conclude that in both the strong and weak cases if the
electromagnetic field is not exact the charges are quantized (cases (A2) and (B2)). In any case,
independently of the exactness of the electromagnetic field the most interesting case is (B2)
as the charges are observationally quantized and (A2) is a special case of it.

A relevant difference between the weak and strong cases is that in the weak case there could
be non-quantized charges with [qψcijk] ∈ H 2(M, 2πZ) non-trivial and [qψcijk] ∈ H 2(M, R)
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trivial. Such [qψcijk] are non-trivial torsion classes and generate non-trivial flat bundles. If the
weak gauge principle holds it is no longer true that a particle description through non-trivial
bundles implies the quantization of charges. Moreover, the existence of a root principal bundle
Q cannot be inferred in the weak case. The description of matter fields as sections of vector
bundles associated with the same universal bundle then radically changes. Each particle has
its own principal bundle.

The long exact sequence for the quantized case implies

ker η = H 1(X, R)/H 1(X, Z). (49)

Note that in a simply connected spacetime ker η = 0 since H 1(X, R) ∼ H 1
dR(X, R) = 0

as in a simply connected manifold all the closed 1-forms are exact. This can be also seen
from the universal covering theorem which states that H 1(X,A) � Hom(π1(X),A), however
one should be careful since H 1(X,A) = 0 does not mean that π1(X) = {e}. Moreover, in
a simply connected spacetime the torsion of H 2(M, 2πZ) vanishes since it is the image of
H 1(M,U(1)) under η. We conclude that the strong case is equivalent to the weak case in
simply connected manifolds.

5. Interpretation

We give an interpretation of (B2) which is the most interesting case from the physical point of
view.

The generic matter field, say ψ , may not be described as the section of a vector bundle
associated with Q under the representation ρψ : U(1) → GL(1, C), u → um since the root
bundle Q does not always exist. On the contrary, each field has its own principal bundle, for
instance ψ is a section of a vector bundle associated with Pψ under the trivial representation
u → u. In general we can regard every field as a section of a vector bundle associated
with a U(1)-bundle under the trivial representation. In this way the different particles are in
one-to-one correspondence with the U(1) principal bundles. The possibility of describing the
fields as sections of vector bundles associated with the same principal bundle under non-trivial
representations arises only if the different U(1)-bundles considered have a common root.
Note that on Pψ a connection can be defined that takes, in suitable local coordinates the form,
ωψ = i(dαi − mqAi), so that covariant derivatives of matter fields make sense. However, no
universal principal bundle Q with a universal connection of the form ω = i(dαi − qAi) as in
usual (strong) gauge theory exists. In any case, on the principal bundles QMN a connection
of that form can be defined although the principal bundle associated with the generic particle
will not be always of the form Qa

MN for suitable a and M,N .
Consider a particle obtained as a bound state of z1 particles ψ and z2 particles φ. The

numbers z1 and z2 are integers and if say z2, is negative then there are |z2| antiparticles of φ in
the bound state. The actual forces responsible for the bound state may not be of electromagnetic
origin and are not important for our analysis. The new bound state is described by the principal
bundle P

z1
ψ ⊗ P

z2
φ .

Equations (45) and (33) show that all the U(1) principal bundles of the form

P = Qa
MN ⊗ Kb a ∈ Z, b ∈ Z/ord η(k) (50)

= P Ma+nb
ψ ⊗ P Na−mb

φ (51)

can be generated from the physical building blocks Pψ and Pφ , however, no common root
exists. Under the one-to-one identification of U(1) principal bundles and fields, the quantity
aq represents the field charge. In particular there are ord η(k) neutral particles (a = 0),

K0,K1, . . . , Kord η(k)−1 (52)
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which can also be regarded as different topological vacuum states. They form a group 〈K〉
isomorphic to Z/ord η(k) under tensorial multiplication. Under the same operation they act on
H 2(M, 2πZ) separating it into cyclic orbits of ord η(k) elements each. For instance a principal
bundle Pψ whose class is in H 2(M, 2πZ) belongs to the orbit

Pψ, Pψ ⊗ K, . . . , Pψ ⊗ Kord η(k)−1. (53)

The neutral content of a generic charged particle is not univocally determined. Indeed,

Qa
MN ⊗ Kb = Qa

M ′N ′ ⊗ Kb−ja. (54)

The interpretation becomes clear looking at equations (45) and (33). The particle represented
by the principal bundle P may be regarded as containing aM particles ψ, aN particles φ and
b neutral particles K. However, the particles ψ and φ can change in number according to
equation (33) as they can annihilate to form neutral particles K. The neutral particle content
cannot in general be determined. However, if a is a multiple of ord η(k), a = ã ord η(k), then
the constant b does not depend on the choice M,N

P = (Qord η(k))ã ⊗ Kb ã ∈ Z. (55)

Thus the particles having a charge multiple of ord η(k)q have a special role as they have a
well-defined neutral particle content.

Given two fields ψ and φ, the class k = [mnqkij ] ∈ H 1(M,U(1)) that we termed the
(relative) interference class determines the different behaviour of the fields under Aharonov–
Bohm interference caused by the topology of the Universe. In other words the topology of
the Universe (i.e. its ‘holes’), being non-trivial, may act in a way analogous to the solenoid
in the Aharonov–Bohm experiment. However, contrary to what could be naively expected
from this analogy the interference phases of ψ and φ are not of the form um, un for a suitable
u ∈ U(1). The interference class determines a different way in which these particles couple
with the topology of the Universe.

We can see this fact easily from the expression of the Aharonov–Bohm phase for the
neutral particle K. Using equation (11)

	k[γ ] = (	ψ [γ ])n(	φ[γ ])−m = exp

{
imnq

∑
i

kii−1

}

= 〈k, [γ ]〉, (56)

where 〈 , 〉 is the dual pairing between H 1(M,U(1)) and H1(M,U(1)), and [γ ] is the homology
class whose representant is γ .

A particular case is obtained if η(k) is trivial in H 2(M, 2πZ), i.e. if K is trivial. In this
case k = σ(kR) for a suitable class kR ∈ H 1(M, R). Then

	k[γ ] = 〈k, [γ ]〉 = ei〈kR,[γ ]R〉R , (57)

where 〈 , 〉R is the dual pairing between H 1(M, R) and H1(M, R), and [γ ]R is the
corresponding homology class whose representant is γ . In other words there is a closed
1-form denoted again with kR such that 	k[γ ] = exp

{
i
∮
γ

kR

}
. Thus there is a topological

Aharonov–Bohm effect that acts on neutral particles. It acquires its characteristic exponential
form only if the torsion of the particle vanishes.

6. Quarks

In the usual strong case there is only one charge quantization unit q. Since the quarks are
described in the Lagrangian by matter fields, the quantization unit should be necessarily
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identified with one third the (minus) electric charge q = e/3 or with a subunit q/z, z ∈ Z
+.

It is therefore incorrect in the strong case to identify the quantum q with minus the electric
charge e. However, it is an experimental fact that all the observed particles have a charge
that is a multiple of e = 3q (quark confinement). The usual strong case does not provide a
mathematics sufficiently rich to describe such a situation.

In the weak case we have seen that given two fields there are two quantization units of
relevance for the theory. The charge quantum q and the unit ord η(k)q. It is natural to identify
e ≡ ord η(k)q, and hence to assume that η(k) is a torsion class K that generates a cyclic
subgroup of order three, ord η(k) = 3. Next we assume for simplicity that H 2(M, 2πZ) has
a torsion subgroup which coincides with the cyclic subgroup 〈K〉.

As we have seen the cyclic group acts on the principal bundle of the field and generates
an entire orbit of ord η(k) = 3 particles. We proceed with the following identification. The
fields considered are quarks and the elements of the orbits correspond to the different colours
of the same particle flavour.

For instance, let the two fields be the ‘up’ and ‘down’ quarks for a certain colour. They
have charge 2q and −q respectively. Then there is a principal U(1)-bundle Q such that the
following bundles are identified with those of u(r), u(g) and u(b)

u: Q2, Q2 ⊗ K, Q2 ⊗ K2. (58)

The actual identification of this bundles with the corresponding colour is important only up to
cyclic permutations. Analogously the bundles corresponding to d(r), d(g) and d(b) are

d: Q−1, Q−1 ⊗ K, Q−1 ⊗ K2. (59)

The next flavour generations (c, s) and (t, b) live on the same principal bundles. For instance
c(r) is a section on the same bundle of u(r). Here, we are considering the simplest possible
model. There is enough room for many other possibility for instance considering a torsion
subgroup larger than those considered here. To the antiparticles correspond the principal
bundles

ū: Q−2, Q−2 ⊗ K2, Q−2 ⊗ K,

d̄: Q, Q ⊗ K2, Q ⊗ K,

and analogously for (c̄, s̄) and (t̄ , b̄).
The SU(3) colour transformations are not ordinary matrices. Indeed, in order to preserve

the above correspondences under colour transformations we must generalize these matrices.
In this model the coefficients Bij of a colour matrix B are not C numbers, instead they are
sections of a complex vector bundle associated with K2(j−i), that is, using the identification
between U(1)-bundles and fields

B ∈

K0 K2 K

K K0 K2

K2 K K0


 .

The coefficients reduce to the usual complex numbers only locally for a given gauge choice.
With the above identifications, taking into account that every baryon is a colour singlet,

we have that the principal bundle associated with it has the form (Q3)k for a suitable integer k.
In particular, it has charge ke. This means that the U(1) principal bundles associated with the
baryonic fields have indeed a common root Q3 which is natural to identify with the principal
bundle root of the leptonic fields. Therefore, in this model, if quarks are not taken into account
the usual (strong) gauge theory applies.
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7. Cosmological considerations

In the previous sections we have shown that the quantization of charge is implied by the non-
exactness of the electromagnetic field. This result leads to a natural physical consequence:
the electromagnetic field may manifest its non-exactness at cosmological scales where the
non-trivial topology manifests itself and, moreover, it does not need to be singular as in
the Dirac’s monopole example. However, the electromagnetic field can be non-exact only if
the spacetime manifold has a non-trivial cohomology group H 2

dR(M, R). We have shown that
in this case the electromagnetic field belongs actually to a non-trivial class of H 2(M, 2π

q
Z)

where q is the charge quantum (this statement also holds in the weak gauge principle case).
Now, a globally hyperbolic spacetime is a product M = S × R where t ∈ R is a time function
[5]. If xi, i = 1, 2, 3 are coordinates on S the metric takes the form

ds2 = χ2(t, x) dt2 − R2(t, x)hij dxi dxj , (60)

where χ and R are suitable functions and det h = 1. The expansion scalar of the congruence of
timelike curves given by u = 1

χ
∂t is θ = 3∂u ln R; hence R can be interpreted as the scale factor

of the Universe. Since M = S × R, the electromagnetic field class is proportional to a non-
trivial cohomology class of H 2(S, 2π

q
Z). This means that the topological non-trivialness of

the electromagnetic field arises from its space components i.e. from the magnetic components.
Now, unless [F ] ∈ H 2(S, 2π

q
Z) is a torsion class [6] (this cannot happen, otherwise F would

be exact, see section 4.2) there is a surface � in S such that c� = q

2π

∫
�

[F ] is a constant
different from zero known as the first Chern number relative to �. The point is that since
it is an integer this number cannot change as the Universe expands. Since the area of �

expands as R2, if f denotes the intensity of the electromagnetic field as measured by a local
inertial observer in �, its value scales as f ∼ 1/R2. Thus the expansion of the Universe
implies that the actual value of the magnetic field in the non-trivial class decreases. Using
the same argument we see that the local energy density of the field scales as 1/R4 exactly as
the incoherent radiation does. This kind of behaviour was present since the beginning of the
Universe when its topology acquired a final form (at least according to general relativity). The
possibility of measuring today a non-trivial cosmological electromagnetic field is then almost
ruled out. Even if present, it would have now a negligible value due to the expansion of the
Universe. This conclusion is reinforced in those cosmological scenarios that admit an initial
inflation.

8. Conclusions

After introducing a weak gauge principle, which requires to consider two charged fields, we
have studied its implications for electric charge quantization for generic spacetime topologies.
We have shown that this new gauge principle has nontrivial implications if the spacetime has
torsion in its second integral cohomology group, but it coincides with the standard one if
H 1(M,U(1)) (and hence the torsion) is trivial.

If the spacetime has torsion, we have shown that there exist topologically non-trivial
configurations of charged fields which do not imply charge quantization. This possibility
has not been previously recognized in the literature, although it is compatible with present
experimental knowledge. On the other hand, we have proved that charges are quantized on
any spacetime whenever the electromagnetic field is not exact.

The weak gauge principle has been exploited, revealing on spaces with torsion a richer
structure than the one which would follow from the ordinary gauge principle. In particular
we have pointed out that neutral particles can be affected by a topological Aharonov–Bohm
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effect, and therefore the interference in such a kind of experiments does not depend solely on
the charge of the particle considered but on a topological invariant which is given by a flat line
bundle. The comparison of two different particles has revealed the role of the interference
class k ∈ H 1(M,U(1)). When this class is trivial the phenomenology reduces to that of
ordinary gauge theory.

We have shown that the weak gauge principle implies that the U(1)-bundles determined
by the matter fields are not, in general, associated with a common principal bundle. Indeed,
they are expressible as a suitable power of a certain non-unique root bundle times a torsion
class. This torsion class plays the role of a new quantum number. A torsion subgroup splits the
space of U(1)-bundles H 2(M, Z) into orbits. Each orbit is identified with a particle while its
elements are identified with the different quantum numbers of that particle. We have provided
an example considering the case of quarks, where the torsion subgroup is the cyclic group Z/3
and the quantum number generated is the colour of the particle. We have shown that the weak
case is more appropriate in order to describe the quarks and the particle generated from them
since the theory naturally embodies two fundamental electric charges, the basic quark charge
q and the electric charge 3q.

We have also suggested that a weak non-exact component of the electromagnetic field
over cosmological scales could be responsible for the quantization of the electric charge.
Indeed, due to the constancy of the Chern numbers characterizing the non-trivial principle
bundle, the expansion of the Universe would make this non-trivial components negligible to
the observational capabilities of present day observers. In order to work, this mechanism needs
a non-contractible topology of the spacetime manifold, although the non-trivial topology may
manifest itself only at cosmological scales. This interesting possibility has the advantage of
not being ruled out by observations although it has the related disadvantage of being difficult
to verify experimentally.
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